Calculate attack rate, case fatality rate, and mortality rate
attack_rate(
cases,
population,
conf_level = 0.95,
multiplier = 100,
mergeCI = FALSE,
digits = 2
)
case_fatality_rate(
deaths,
population,
conf_level = 0.95,
multiplier = 100,
mergeCI = FALSE,
digits = 2
)
case_fatality_rate_df(
x,
deaths,
group = NULL,
conf_level = 0.95,
multiplier = 100,
mergeCI = FALSE,
digits = 2,
add_total = FALSE
)
mortality_rate(
deaths,
population,
conf_level = 0.95,
multiplier = 10^4,
mergeCI = FALSE,
digits = 2
)
number of cases or deaths in a population. For _df
functions, this can be the name of a logical column OR an evaluated
logical expression (see examples).
the number of individuals in the population.
a number representing the confidence level for which to
calculate the confidence interval. Defaults to 0.95, representing a 95%
confidence interval using binom::binom.wilson()
The base by which to multiply the output:
multiplier = 1
: ratio between 0 and 1
multiplier = 100
: proportion
multiplier = 10^4
: x per 10,000 people
Whether or not to put the confidence intervals in one column (default is FALSE)
if mergeCI = TRUE
, this determines how many digits are printed
a data frame
the bare name of a column to use for stratifying the output
if group
is not NULL, then this will add a row containing
the total value across all groups.
a data frame with five columns that represent the numerator, denominator, rate, lower bound, and upper bound.
attack_rate()
: cases, population, ar, lower, upper
case_fatality_rate()
: deaths, population, cfr, lower, upper
# Attack rates can be calculated with just two numbers
print(ar <- attack_rate(10, 50), digits = 4) # 20% attack rate
#> cases population ar lower upper
#> 1 10 50 20 11.24 33.04
# print them inline using `fmt_ci_df()`
fmt_ci_df(ar)
#> [1] "20.00% (CI 11.24--33.04)"
# Alternatively, if you want one column for the CI, use `mergeCI = TRUE`
attack_rate(10, 50, mergeCI = TRUE, digits = 2) # 20% attack rate
#> cases population ar ci
#> 1 10 50 20 (11.24--33.04)
print(cfr <- case_fatality_rate(1, 100), digits = 2) # CFR of 1%
#> deaths population cfr lower upper
#> 1 1 100 1 0.18 5.4
fmt_ci_df(cfr)
#> [1] "1.00% (CI 0.18--5.45)"
# using a data frame
if (require("outbreaks")) {
withAutoprint({
e <- outbreaks::ebola_sim$linelist
case_fatality_rate_df(e,
outcome == "Death",
group = gender,
add_total = TRUE,
mergeCI = TRUE
)
})
}
#> Loading required package: outbreaks
#> > e <- outbreaks::ebola_sim$linelist
#> > case_fatality_rate_df(e, outcome == "Death", group = gender, add_total = TRUE,
#> + mergeCI = TRUE)
#> # A tibble: 3 × 5
#> gender deaths population cfr ci
#> <fct> <int> <int> <dbl> <chr>
#> 1 f 1301 2299 56.6 (54.55--58.60)
#> 2 m 1281 2266 56.5 (54.48--58.56)
#> 3 Total 2582 4565 56.6 (55.12--57.99)